

Rafał K. Mantiuk

HDR, displays & low-level vision

SIGGRAPH Asia Course on Cutting-Edge VR/AR Display Technologies

European Research Council Established by the European Commission

These slides are a part of the course

Cutting-edge VR/AR Display Technologies (Gaze-, Accommodation-, Motion-aware and HDR-enabled)

Presented at SIGGRAPH Asia in Tokyo on the 5th of December 2018

The latest version of the slides and the slides for the remaining part of the tutorial can be found at:

https://github.com/vrdisplays/sigasia2018

Material is copyright © Rafał Mantiuk, 2018, except where otherwise noted.

HDR & VR ?

Do we need HDRVR headsets?

http://www.oculusvr.com/

OLED contrast 1,000,000:1

ToC

- HDR in a nutshell
- Display technologies in VR
- Perception & image quality
- Example: Temporal Resolution Multiplexing

Dynamic range

Dynamic range (contrast)

As ratio:

$$C = \frac{L_{\max}}{L_{\min}}$$

- Usually written as C:1, for example 1000:1.
- As "orders of magnitude" or log 10 units: $C = 10\sigma^{-2}$

$$C_{10} = \log_{10} \frac{L_{\text{max}}}{L_{\text{min}}}$$

T

• As stops:

$$C_2 = \log_2 \frac{L_{\text{max}}}{L_{\text{min}}}$$

One stop is doubling of halving the amount of light

Visible colour gamut

- The eye can perceive more colours and brightness levels than
 - a display can produce
 - a JPEG file can store
- The premise of HDR:
 - Visual perception and not the technology should define accuracy and the range of colours
 - The current standards not fully follow to this principle

Standard vs. High Dynamic Range

- HDR cameras/formats/displays attempt capture/represent/reproduce (almost) all visible colours
 - They represent scene colours and therefore we often call this representation scene-referred

SDR cameras/formats/devices attempt to capture/represent/reproduce only colours of a standard sRGB colour gamut, mimicking the capabilities of CRTs monitors

They represent display colours and therefore we often call this representation display-referred

Luminance

Luminance – measure of light intensity weighted by the sensitivity of the achromatic mechanism. Units: cd/m²

From rendering to display

From rendering to display

Luminance and Luma

Luminance

- Photometric quantity defined by the spectral luminous efficiency function
- L ≈ 0.2126 R + 0.7152 G +
 0.0722 B
- Units: cd/m²

Luma

- Gray-scale value computed from LDR (gamma corrected) image
- Y = 0.2126 R' + 0.7152 G' + 0.0722 B'
 - R' prime denotes gamma correction

$$R' = R^{1/g}$$

Unitless

Sensitivity to luminance

Weber-law – the just-noticeable difference is proportional to the magnitude of a stimulus

Consequence of the Weber-law

Smallest detectable difference in luminance

$$\frac{\Delta L}{L} = k_{\rm e} \qquad For k=1\% \qquad L \qquad \Delta L$$

$$\frac{100 \text{ cd/m}^2}{1 \text{ cd/m}^2} \qquad 0.01 \text{ cd/m}^2$$

- Adding or subtracting luminance will have different visual impact depending on the background luminance
- Unlike LDR luma values, luminance values are not perceptually uniform!

How to make luminance (more) perceptually uniform?

Using "Fechnerian" integration

Assuming the Weber law

$$\frac{\Delta L}{L} = k_{\rm c}$$

and given the luminance transducer

$$R(L) = \int_0^L \frac{1}{\Delta L(l)} dl$$

the response of the visual system to light is:

$$R(L) = \int \frac{1}{kL} dL = \frac{1}{k} \ln(L) + k_1$$

Fechner law

$R(L) = a \ln(L)$

Response of the visual system to luminance is approximately logarithmic

Gustav Fechner [From Wikipedia]

The values of HDR pixel values are much more intuitive when they are plotted / considered / processed in the logarithmic domain

ToC

- HDR in a nutshell
- Display technologies in VR
- Perception & image quality
- Example: Temporal Resolution Multiplexing

VR display technologies

TN, STN, MVA, **TFT-LCD** PVA, IPS

- Contrast: <3000:1</p>
- Transmissive
- Complex temporal response
- Arbitrary bright
- Constant power at constant backlight

AMOLED

- Contrast: >10,000:1
- Emmisive
- Rapid response
- Brightness affects longevity
- Power varies with image content

LCD

- color may change with the viewing angle
- contrast up to 3000:1
- higher resolution results in smaller fill-factor
- color LCD transmits only up to 8% (more often close to 3-5%) light when set to full white

LCD temporal response

- Experiment on an IPS LCD screen
- We rapidly switched between two intensity levels at 120Hz
- Measured luminance integrated over 1s
- The top plot shows the difference between expected $\left(\frac{I_{t-1}+I_t}{2}\right)$ and measured luminance
- The bottom plot: intensity measurement for the full brightness and half-brightness display settings

OLED

- based on electrophosphorescence
- large viewing angle
- the power consumption varies with the brightness of the image
- fast (< I microsec)</pre>
- arbitrary sizes
- life-span is a concern
- more difficult to produce

Low persistence displays

- Most VR displays flash an image for a fraction of frame duration
- This reduces hold-type blur
- And also reduces the perceived lag of the rendering

Lens in VR displays

Aberrations when viewing off-center

- Chromatic aberration
- Loss of resolution
- Difficult to eliminate if the exact eye position is unknown

Glare

- Scattering of the light in the lens
- From Fresnel fringes
- Reduces dynamic range

Resolution

- Relevant units: pixels per visual degree [ppd]
- Nyquist frequency in cycles per degree = $\frac{1}{2}$ of ppd
- PC & mobile resolution
 - I981: 12" 320x200 monitor @50cm: 10.9 ppd
 - I 990: 12" 1024x768 monitor @50cm: 37 ppd
 - > 2011: 3.5" 960x640 iPhone @30cm: 68 ppd
 - 2016: 31" 4K monitor @50cm: 50 ppd
 - 2018: 6" phone @30cm: 117 ppd
- VR resolution
 - > 2016 HTC Vive: 10 ppd
 - > 2018 HTC Vive Pro: 13 ppd

ToC

- HDR in a nutshell
- Display technologies in VR
- Perception & image quality
- Example: Temporal Resolution Multiplexing

(Camera) image reconstruction model

• Can we come up with a similar model for visual system?

Modeling visual system

Contrast Sensitivity Function

Excellent visualization of the human eye: https://animagraffs.com/human-eye/

Spatial frequency [cycles per degree]

Contrast Sensitivity Function

Contrast Sensitivity Function

Sensitivity = inverse of the detection threshold

$$S = \frac{L_b}{\Delta L}$$

- Detection of barely noticeable luminance difference ΔL on a uniform background L_b
- Varies with luminance

CSF models: Barten, P. G. J. (2004). https://doi.org/10.1117/12.537476 Mantiuk, R., Kim, K. J., Rempel, A

Mantiuk, R., Kim, K. J., Rempel, A. G., & Heidrich, W. (2011) https://doi.org/10.1145/2010324.1964935

Spatio-chromatic CSF

High brightness HDR display $[15,000 \text{ cd}/\text{m}^2]$

Rafał Mantiuk, University of Cambridge

Spatio-chromatic CSF

 Chromatic channels (red-green, blue-yellow) are much less sensitive to high frequencies

This is why we can (often) get away with chroma subsampling in image/video compression **Contrast Constancy**

CSF is NOT MTF of visual system

- Contrast constancy
- There is little variation in magnitude of perceived contrast above the detection threshold

Contrast constancy No CSF above the detection threshold

Modeling visual perception

Since visual system is highly non-linear, a linear model

cannot be used.

Visual processing is an unknown non-linear function:

Predicting visible differences with CSF

• But we can use CSF to find the probability of spotting a difference between a pair of images X_1 and X_2 :

$$p(f[X_1] = f[X_2] | X_1, X_2, CSF)$$

(simplified) Visual Difference Predictor

Daly, S. (1993). Mantiuk, R., et al. (2011) https://doi.org/10.1145/2010324.1964935

Retinal velocity

- Sensitivity drops rapidly once images start to move
- The eye tracks moving objects
 - Smooth Pursuit Eye Motion (SPEM)
 - Stabilizes images on the retina
 - But tracking is not perfect
- Loss of sensitivity mostly caused by imperfect SPEM
 - SPEM worse at high velocities
- Motion sharpenning
 - Masks the loss of higher
- 56 frequencies

Spatio-velocity contrast sensitivity

Kelly's model [1979]

Hold-on blur

- The eye smoothly follows a moving object
- But the image on the display is "frozen" for 1/60th of a second

Hold-on blur

- The eye smoothly follows a moving object
- But the image on the display is "frozen" for 1/60th of a second

Hold-on blur

- The eye smoothly follows a moving object
- But the image on the display is "frozen" for 1/60th of a second

Flicker

Critical Flicker Frequency

- Strongly depends on luminance – big issue for HDRVR headsets
- Increases with eccentricity
- and stimulus size
- It is possible to detect flicker even at 2kHz
 - For saccadic eye motion

Simulation (cyber) sickness

- Conflict between vestibular and visual systems
 - When camera motion inconsistent with head motion
 - Frame of reference (e.g. cockpit) helps
 - Worse with larger FOV
 - Worse with high luminance and flicker

ToC

- HDR in a nutshell
- Display technologies in VR
- Perception & image quality
- Example: Temporal Resolution Multiplexing

VR rendering – required bandwidth

$2 \times (1400 \times 1600) \times 90 \times 3 \approx 1.13$ GBps ≈ 9 Gbps 2 eyes resolution refresh rate pixel data

TRM: Temporal Resolution Multiplexing

- Render every second frame at a lower resolution
- Transfer high- and low-resolution frames
- When displaying
 - Compensate for the loss of high frequencies
 - Model display and its limitations
 - Handle the limited dynamic range

See the demo in the break!

[Denes et al. 2019, Temporal Resolution Multiplexing ..., TCVCG/IEEE VR]

TRM: Why does it work?

- The eye cannot see high spatio-temporal frequencies
- The eye cannot see the loss of sharpness for moving objects – motion sharpenning
 Head motion "masks"

Summary

- VR/AR display technologies must exploit the limitations of the visual system
 - Because the display / rendering bandwidth is becoming too large
- HDR for VR is a great idea because
 - It gives more realistic experience
 - Better quality with the same number of pixels
 - Additional depth cues
- HDR for VR is bad idea because
 - Increased flicker visibility
 - Increased simulation sickness
 - Lens glare will reduce the effective dynamic range

References

Concise overview of high dynamic range imaging

- Mantiuk, R. K., Myszkowski, K., & Seidel, H. (2015). High Dynamic Range Imaging. In Wiley Encyclopedia of Electrical and Electronics Engineering (pp. 1–42). Hoboken, NJ, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/047134608X.W8265
- Downloadable PDF: <u>http://www.cl.cam.ac.uk/~rkm38/pdfs/mantiuk15hdri.pdf</u>

Comprehensive book on display technologies

- Hainich, R. R., & Bimber, O. (2011). *Displays: Fundamentals and Applications*. CRC Press.
- https://goo.gl/RLe8nA

Book on HDR Imaging

Reinhard, E., Heidrich, W., Debevec, P., Pattanaik, S., Ward, G., & Myszkowski, K. (2010). High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting (2nd editio). Morgan Kaufmann.

Computational models of visual perception

WANDELL, B.A. 1995. Foundations of vision. Sinauer Associates.